Multiple forces can be applied to an object (for AP Physics C)

First principles

A **force** is a push or a pull exerted on an object by another object.

[F] = N

Newton I

(special case of Newton II)

So long as the sum of all external forces acting on an object equals zero, the object's velocity is constant.

 $\sum \vec{F} = \vec{0} \Leftrightarrow \text{constant } \vec{v}$

Newton II

The velocity of an object changes at a rate proportional to the sum of all external forces and inversely proportional to the object's mass (tendency to not accelerate).

$$[m] = kg$$
$$\vec{\mathbf{a}} := \frac{\mathrm{d}\vec{\mathbf{v}}}{\mathrm{d}t} = \frac{\sum \vec{\mathbf{F}}}{m}$$

Newton III

Each force has a partner force of equal magnitude and opposite direction, with the roles of the object doing the pushing and the object being pushed exchanged.

There exists $\vec{F}_{-, 2 \text{ ON } 1}$ \Rightarrow there also exists $\vec{F}_{-, 1 \text{ ON } 2} = -\vec{F}_{-, 2 \text{ ON } 1}$

Common forces				
Origin	Force	Label	Magnitude formula	Direction relative to object being acted on
Peripheral proximity to Earth	Gravitational (Newtonian)	F _G	mg	From object toward Earth
Proximity to massive object			$\frac{Gm_1m_2}{r^2}$	From object to other mass
<i>Contact</i> with stretched string	Tension	Т	No defining formula	From object back into string
<i>Contact</i> with surface	Normal	Ν	No defining formula	⊥ to contact plane, pushes back into object
	Static friction	fs fr	Less than greatest sustainable (for a given N) $f_{\rm S} < \mu_{\rm S} N$	∥ to contact plane, opposes interfacial slippage
			Greatest sustainable ("") $f_{\rm S} = \mu_{\rm S} N$	
			Unsustainable ("") $f_{\rm S} > \mu_{\rm S} N$	
		JK	$\mu_{K^{IV}}$	
Contact with fluid medium	(laminar)	D	<i>b</i> <i>v</i>	Opposes motion of object through fluid
	Ballistic drag		$\frac{1}{2}C\rho Av^2$	
Contact with spring	Spring (Hookean)	F _{SPR}	$k \Delta x $	Opposes spring deformation
<i>Proximity</i> to other charge	Electric (Coulomb)	F _E	$\frac{k q_1 q_2 }{r^2}$	Opposites attract; like repel
			q E	$\vec{F}_E \parallel \vec{E}$ for (+) test charge
Proximity to other moving charge(s)	Magnetic (Lorentz)	F_{B}	$ q v \sin \theta B$	RHR
			$I\ell \sin\theta B$	

There is **no such force as "the net" force**. The phrase "the net force" refers to the sum of all *actual* forces acting on a system.

Problem-solving algorithm

- 1. Carefully **read** problem three times.
- Sketch system(s) of interest enclosed in dashed <u>b</u>ubble(s) and sketch relevant aspects of the environment.
- 3. List any **givens** not already sketched. List requested **unknowns**.
- 4. For each system of interest, draw a dot diagram with signed Cartesian <u>a</u>xes.
 - a. Include all actual forces. Ask the following questions and obtain, as needed, *labels* from the table of common forces.
 - i. Is the **Earth nearby?**
 - ii. Is anything the system?
 - iii. Other than the Earth, are any massive objects nearby?
 - iv. Any charges nearby?
 - v. Any moving charges nearby?
 - b. Do not include extraneous forces. All forces on a dot diagram must act **on** the object represented by the dot.
 - c. Populate a spreadsheet of force components (e.g. F_x and F_y)
 - d. If dot diagrams for multiple systems are drawn, recognize each **interaction force pair** (equal magnitudes).
 - e. Sum up forces in each column of spreadsheet ($\sum F_x = ma_x$ etc.)
- Solve resulting system of equations for unknowns (or determine unknowns directly in cells of spreadsheet). Sometimes, substituting *magnitude formulas* might be necessary.
- Remember: Base your reasoning on Newtonian principles, not on "what it feels should be the case."